

What's the science story?

Ionising radiation is hazardous but can be very useful. Although radioactivity was discovered over a century ago, it took many nuclear physicists several decades to understand the structure of atoms, nuclear forces and stability. Early researchers suffered from their exposure to ionising radiation. Rules for radiological protection were first introduced in the 1930s and subsequently 138 Visit aqa.org.uk/8464 for the most up-to-date specification, resources, support and administration improved. Today radioactive materials are widely used in medicine, industry, agriculture and electrical power generation.

Previous knowledge:	N	ext steps	. 7
C1 – Atomic structure and periodic table	N	/Α	
Keywords Neutrons Nucleus Protons Electrons Plum pudding	Rutherfo Radiatio Alpha Beta	on	Irradiation Stable/unstable Hall-life Gamma Contamination
Working scientifically skills: WS2 - Draw/Interpret diagrams WS3 - Make predictions - Make prediction using a model WS4 - Ethical arguments - Rights and wrongs of technology WS5 - Risk perception - Hazards of new technology		Assessments: End of unit test (summative) Exit tickets x 1 (formative) - Exit ticket – Half life	

Lesson No. and Title	Learning objectives	AQA Specification	Practical equipment
Optional review lesson	 Know basic structure of the atom, including size Understand electron arrangement and significance to reactivity Understand what the atomic number, mass number and isotopes are. 	 6.4.1.1 The structure of an atom Atoms are very small, having a radius of about 1 × 10-10 metres. The basic structure of an atom is a positively charged nucleus composed of both protons and neutrons surrounded by negatively charged electrons. The radius of a nucleus is less than 1/10 000 of the radius of an atom. Most of the mass of an atom is concentrated in the nucleus. The electrons are arranged at different distances from the nucleus (different energy levels). The electron arrangements may change with the absorption of electromagnetic radiation (move further from the nucleus; a higher energy level) or by the emission of electromagnetic radiation (move closer to the nucleus; a lower energy level). MS 1b WS 4.4 Students should be able to recognise expressions given in standard form. 6.4.1.2 Mass number, atomic number and isotopes In an atom the number of electrons is equal to the number of protons in the nucleus. Atoms have no overall electrical charge. All atoms of a particular element have the same number of protons. The number of protons in an atom is called its mass number. Atoms of the same element can have different numbers of neutrons; these atoms are called isotopes of that element. Atoms turn into positive ions if they lose one or more outer electron(s). Students should be able to relate differences between isotopes to differences in conventional representations of their identities, charges and masses. 	
1. The discovery of the nucleus	 4 – To identify the Rutherford (nuclear) model of an atom. 6 – To describe the evidence provided by the Rutherford scattering experiment. 8 – To compare the plum pudding, Bohr model and Rutherford model of an atom. 	6.4.1.3 The development of the model of the atom (common content with chemistry) New experimental evidence may lead to a scientific model being changed or replaced. Before the discovery of the electron, atoms were thought to be tiny spheres that could not be divided. The discovery of the electron led to the plum pudding model of the atom. The plum pudding model suggested that the atom is a ball of positive charge with negative electrons embedded in it. The results from the alpha particle scattering experiment led to the conclusion that the mass of an atom was concentrated at the centre (nucleus) and that the nucleus was charged. This nuclear model replaced the plum pudding model. Niels Bohr adapted the nuclear model by suggesting that electrons orbit the nucleus at specific distances. The theoretical calculations of Bohr agreed with experimental observations. Later experiments led to the idea that the positive charge of any nucleus could be subdivided into a whole number of smaller particles, each particle having the same amount of positive charge. The name proton	

	 was given to these particles. The experimental work of James Chadwick provided the evidence to show the existence of neutrons within the nucleus. This was about 20 years after the nucleus became an accepted scientific idea. Students should be able to describe: why the new evidence from the scattering experiment led to a change in the atomic the difference between the plum pudding model of the atom and the nuclear model of the atom. Details of experimental work supporting the Bohr model are not required. 	
 2. Alpha, beta and gamma 2. Alpha, beta and gamma 4 – To rank the three types of nuclear radiation in a range of ways. 6 – To describe the process of ionisation. 8 – To evaluate the risks caused by alpha radiation inside and outside the body. 	6.4.2.4 Radioactive contamination Radioactive contamination is the unwanted presence of materials containing radioactive atoms on other materials. The hazard from contamination is due to the decay of the contaminating atoms. The type of radiation emitted affects the level of hazard. Irradiation is the process of exposing an object to nuclear radiation. The irradiated object does not become radioactive. Students should be able to compare the hazards associated with contamination and irradiation. Suitable precautions must be taken to protect against any hazard that the radioactive source used in the process of irradiation may present. Students should understand that it is important for the findings of studies into the effects of radiation on humans to be published and shared with other scientists so that the findings can be checked by peer review. 6.4.2.1 Radioactive decay and nuclear radiation Some atomic nuclei are unstable. The nucleus gives out radiation as it changes to become more stable. This is a random process called radioactive decay. Activity is the rate at which a source of unstable nuclei decays. Activity is measured in becquerel (Bq) Count-rate is the number of decays recorded each second by a detector (eg Geiger-Muller tube). The nuclear radiation emitted may be: • an alpha particle (α) – this consists of two neutrons and two protons, it is the same as a helium nucleus • a beta particle (β) – a high speed electron ejected from the nucleus as a neutron turns into a proton • a gamma ray (γ) – electromagnetic radiation from the nucleus	DEMO – Radioactive sources and counter

		Required knowledge of the properties of alpha particles, beta particles and gamma rays is limited to their penetration through materials, their range in air and ionising power. Students should be able to apply their knowledge to the uses of radiation and evaluate the best sources of radiation to use in a given situation.	
3. Changes in nucleus	 4 – To identify the type of decay taking place from a nuclear equation. 6 – To describe the differences between isotopes. 8 – To write full decay equations for example nuclear decays. 	6.4.2.2 Nuclear equations Nuclear equations are used to represent radioactive decay. In a nuclear equation an alpha particle may be represented by the symbol: $\begin{array}{c} 4\\ 2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	

4. Activity and half life	 4 – To define half-life. 6 – To plot a graph showing the decay of a sample and determine half life. 8 – To calculate the changes in count rate by using exponential decay function. 	 6.4.2.3 Half-lives and the random nature of radioactive decay Radioactive decay is random. The half-life of a radioactive isotope is the time it takes for the number of nuclei of the isotope in a sample to halve, or the time it takes for the count rate (or activity) from a sample containing the isotope to fall to half its initial level. Students should be able to explain the concept of half-life and how it is related to the random nature of radioactive decay. Students should be able to determine the half-life of a radioactive isotope from given information. (HT only) Students should be able to calculate the net decline, expressed as a ratio, in a radioactive emission after a given number of half-lives. 	PRAC – Class set of dice to model decay
---------------------------	---	--	--