

P1 Energy

What's the scier	•					
The concept of energy emerged in the 19th century. The idea was used to explain the work output of steam engines and then generalised to understand other heat engines. It also became a key tool for understanding chamical reactions and biological systems.						
	0	U				
and engineers	are working hard to lue	ntify ways to reduce our	energy usage.			
Previous knowle	edge:		Next steps	ÿ		
Year 8 – Energy -	- insulation, conduction.	Energy efficiency.	P4 – Electricity – use of similar equations. Use of equations throughout all physics topics.	۲,		
SMSC: Energy et	fficiency/green power.			Ť		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			3		
				۲		
Keywords						
Conservation	Work done	Kin	etic			
Dissipation	Potential	The	rmal			
Joules	Spring constant	Ela	stic			
Efficiency	Proportionality	Gravit	vitational			
		Specific He	at Capacity			
		Latent He	at Capacity			
			burce			

Working scientifically skills:	Assessments:
MS8: Writing Methods	
WS10: Selecting equipment	End of unit test (summative) (out of 50)
WS14: Drawing graphs	Exit tickets x 2/3 (formative)
WS15: Using data	Power station
WS16: Using equations	• I do (SHC)
WS18: Converting units	
WS19: Prefixes and powers	

Lesson No. and Title	Learning objectives	AQA Specification	Practical equipment
1.Changes in Energy stores.	3/4 – State the ways in which energy can be stored and transferred. 4/5 – Describe wasted and useful energy. 7+ – Explain the energy transfers in a variety of systems.	 6.1.1.1 Energy stores and systems A system is an object or group of objects. There are changes in the way energy is stored when a system changes. Students should be able to describe all the changes involved in the way energy is stored when a system changes, for common situations. For example: an object projected upwards a moving object hitting an obstacle an object accelerated by a constant force a vehicle slowing down bringing water to a boil in an electric kettle. Throughout this section on Energy students should be able to calculate the changes in energy involved when a system is changed by: heating work done by forces work done when a current flows 	

2.Conservation of energy and work done.	3/4 – State the rule of energy conservation and show in a simple example. 4/5 – Use Work Done equation in simple form. 7+ – Apply Work Done equation in a range of situations.	 6.5 Work done The work done by a force on an object can be calculated using the equation: work done = force × distance moved along the line of action of the force W = F s work done, W, in joules, J force, F, in newtons, N distance, s, in metres Students should be able to recall and apply this equation. One joule of work is done when a force of one newton causes a displacement of one metre. 1 joule = 1 newton-metre Students should be able to describe the energy transfer involved when work is done. 	
3. Conservation of energy.	 4/5 To investigate the energy transfers in a pendulum and bungee. 6 – To apply the law of conservation of energy in straightforward situations. 7/8 – To describe closed systems and the energy stores within them by using the principle of conservation of energy. 	 6.1.2.1 Energy changes in a system Energy can be transferred usefully, stored or dissipated, but cannot be created or destroyed. Students should be able to describe with examples where there are energy transfers in a closed system, that there is no net change to the total energy. Students should be able to describe, with examples, how in all system changes energy is dissipated, so that it is stored in less useful ways. This energy is often described as being 'wasted'. 	 Mass Long rubber band/elastic Metre rule Clamp stand

4.Energy equations	4 – State the key equations 5/6 - Apply the equations to novel situations 7+ Rearrange the equations and apply	6.1.1.2 Changes in energy The kinetic energy of a moving object can be calculated using the equation: kinetic energy = $0.5 \times mass \times speed 2$ kinetic energy, Ek , in joules, J mass, m , in kilograms, kg speed, v , in metres per second, m/s The amount of elastic potential energy stored in a stretched spring can be calculated using the equation: $elastic potential energy = 0.5 \times spring \ constant \times extension 2(assuming the limit of proportionality has not been exceeded)elastic potential energy, Ee, in joules, Jspring constant, k, in newtons per metre, N/mextension, e, in metres, mThe amount of gravitational potential energy gained by an objectraised above ground level can be calculated using the equation:g \cdot p \cdot e \cdot = mass \times gravitational field strength \times heightgravitational potential energy, Ep, in joules, Jmass, m, in kilograms, kggravitational potential energy for a joules, Jmass, m, in kilograms, kggravitational potential energy for a strength raised above ground level can be calculated using the equation:g \cdot p \cdot e \cdot = mass \times gravitational field strength \times heightgravitational potential energy, Ep, in joules, Jmass, m, in kilograms, kggravitational field strength, g, in newtons per kilogram, N/kg (In anycalculation the value of the gravitational field strength (g) will begiven).height, h, in metres, m$	
5. Elastic Energy Stores	 4 – To state the factors that affect the elastic potential energy of a spring. 5/6 To calculate the elastic potential energy store of a stretched spring. 7+ - Apply knowledge with links to car safety features. 	6.1.1.2 Energy Changes elastic potential energy = 0.5 × s pring constant × extension 2 Ee = 12 k e2 (assuming the limit of proportionality has not been exceeded) elastic potential energy, Ee, in joules, J spring constant, k, in newtons per metre, N/m extension, e, in metres, m	Hooke's Law Masses Spring Metre rule Clamp and clamp stand

6. Specific Heat Capacity	 4 – State the factors that affect the amount of energy required to increase the temperature of an object. 6 – Calculate the energy required to change the temperature of an object. 7+ – Use the specific heat capacity equation to make calculations in unfamiliar contexts. 	6.1.1.3 Energy changes in systems The amount of energy stored in or released from a system as its temperature changes can be calculated using the equation: <i>change in thermal energy = mass × specific heat capacity</i> × <i>temperature change</i> $\Delta E = m c \Delta \theta$ change in thermal energy, ΔE , in joules, J mass, <i>m</i> , in kilograms, kg specific heat capacity, <i>c</i> , in joules per kilogram per degree Celsius, J/kg °C temperature change, $\Delta \vartheta$, in degrees Celsius, °C The specific heat capacity of a substance is the amount of energy required to raise the temperature of one kilogram of the substance by one degree Celsius.	
7.SHC RP	 4 – To state the factors that affect the elastic potential energy of a spring. 5/6 To calculate the elastic potential energy store of a stretched spring. 7+ Answer the applied question in the form of a 6 mark answer. 	Required practical activity 14: an investigation to determine the specific heat capacity of one or more materials. The investigation will involve linking the decrease of one energy store (or work done) to the increase in temperature and subsequent increase in thermal energy stored.	SHC RP Blocks of metal Ammeter Voltmeter Power Pack and wires Thermometer

8. Power	3/4 – Define Power use equations, including units. 4/5 – Rearrange the power equations. 7+ – Explain the energy transfers in a variety of systems.	6.1.1.4 Power Power is defined as the rate at which energy is transferred or the rate at which work is done. power = <u>energy transferred</u> time P = E/t power = <u>work done</u> time P = W/t power, P, in watts, W energy transferred, E, in joules, J time, t, in seconds, s work done, W, in joules, J An energy transfer of 1 joule per second is equal to a power of 1watt. Students should be able to give examples that illustrate the definition of power eg comparing two electric motors that both lift the same weight through the same height but one does it faster than the other.	
9.Energy and efficiency	 4/5 - To describe energy efficiency and how to calculate it. 5/6 - To use the law of conservation of energy to explain why efficiency can never be greater than 100%. 6/7 – Apply equation for a range of appliances. 	 6.1.2.2 Efficiency The energy efficiency for any energy transfer can be calculated using the equation: efficiency = <u>use f ul output energy transfer</u> total in put energy transfer Efficiency may also be calculated using the equation: efficiency = <u>useful power output</u> total power in put 	

10. Energy and efficiency	4/5 - To describe energy efficiency and how to calculate it. 5/6 – Use a Sankey diagram to show efficiency.	6.1.2.2 Efficiency The energy efficiency for any energy transfer can be calculated using the equation: <i>efficiency</i> = <u>use f ul output energy transfer</u> total in put energy transfer Efficiency may also be calculated using the equation: <i>efficiency</i> = <u>useful power output</u> total power in put	
11.Insulation and conductivity	3/4 – Define conduction, convection and radiation 4/5 – Design and plan a practical to measure energy transfer 7+ – Apply knowledge by conducing practical and writing a scientific report	 6.1.2.1. Energy transfers in a system Energy can be transferred usefully, stored or dissipated, but cannot be created or destroyed. Students should be able to describe with examples where there are energy transfers in a closed system, that there is no net change to the total energy. Students should be able to describe, with examples, how in all system changes energy is dissipated, so that it is stored in less useful ways. This energy is often described as being 'wasted'. Students should be able to reducing unwanted energy transfers, for example through lubrication and the use of thermal insulation. The higher the thermal conductivity of a material the higher the rate of energy transfer by conduction across the material. Students should be able to describe how the rate of cooling of a building is affected by the thickness and thermal conductivity of its walls. Students do not need to know the definition of thermal conductivity. 	

		6.1.3 National and global energy reserves The main energy resources available for use on Earth include: fossil fuels (coal, oil and gas), nuclear fuel, bio-fuel, wind, hydroelectricity,
		fuels (coal, oil and gas), nuclear fuel, bio-fuel, wind, hydroelectricity, geothermal, the tides, the Sun and water waves. A renewable energy resource is one that is being (or can be) replenished as it is used. The uses of energy resources include: transport, electricity generation and heating.
12. Renewable energy	3/4 – Define 'renewable' energy 4/5 – Evaluate renewable energy 7+ – Apply knowledge to explain the effects of renewable energy on the environment	 generation and neating. Students should be able to: describe the main energy sources available distinguish between energy resources that are renewable and energy resources that are non-renewable compare ways that different energy resources are used, the uses to include transport, electricity generation and heating understand why some energy resources are more reliable than others describe the environmental impact arising from the use of different energy resources explain patterns and trends in the use of energy resources. Descriptions of how energy resources are used to generate electricity are not required.
		 consider the environmental issues that may arise from the use of different energy resources show that science has the ability to identify environmental issues arising from the use of energy resources but not always the power to deal with the issues because of political, social, ethical or economic considerations.

		6.1.3 National and global energy reserves
		The main energy resources available for use on Earth include: fossil
		fuels (coal, oil and gas), nuclear fuel, bio-fuel, wind, hydroelectricity,
		geothermal, the tides, the Sun and water waves.
		A renewable energy resource is one that is being (or can be)
		replenished as it is used.
		The uses of energy resources include: transport, electricity
		generation and heating.
		Students should be able to:
	3/4 – Define non-renewable	 describe the main energy sources available
	energy	 distinguish between energy resources that are renewable and
	4/5 – Describe and explain the	energy resources that are non-renewable
13.Non-	difference between	 compare ways that different energy resources are used, the
renewable	renewable and non-	uses to include transport, electricity generation and heating
energy	renewable sources	 understand why some energy resources are more reliable
resources	7+ – Evaluate the effect of	than others
	energy use on the environment	 describe the environmental impact arising from the use of
	environment	different energy resources
		 explain patterns and trends in the use of energy resources.
		Descriptions of how energy resources are used to generate
		electricity are not required.
		Students should be able to:
		consider the environmental issues that may arise from the use
		of different energy resources
		show that science has the ability to identify environmental
		issues arising from the use of energy resources but not
		always the power to deal with the issues because of political,
		social, ethical or economic considerations.

14./15.Energy efficient house	 3/4 – State energy saving factors of the house. 4/5 – Describe energy saving factors of the house, using keywords. 7+ – Explain energy saving factors, linking to environmental issues. To include saving energy and providing renewable energy. 	 6.1.1 Energy changes in a system Students should be able to explain ways of reducing unwanted energy transfers, for example through lubrication and the use of thermal insulation. The higher the thermal conductivity of a material the higher the rate of energy transfer by conduction across the material. Students should be able to describe how the rate of cooling of a building is affected by the thickness and thermal conductivity of its walls. Students do not need to know the definition of thermal conductivity. Students should be able to: consider the environmental issues that may arise from the use of different energy resources show that science has the ability to identify environmental issues arising from the use of energy resources but not always the power to deal with the issues because of political, social, ethical or economic considerations. 	Materials to build a model/make a poster.
----------------------------------	--	---	--