<u> Topci 5: Lig<mark>ht</mark></u>

What's the science story?

The idea of waves is useful because it is the key to explaining how energy can be transferred from one object to another object by radiation, even when the objects are not touching. Waves carry information that can be detected by humans or manufactured detectors. Understanding waves helps us to communicate, explore the universe, and transfer energy to where we want it.

This topic focuses on the behaviour of light waves in both reflection and refraction, and the colour spectrum. Students will learn about the structures in the eye and how the camera is similar in how it captures light.

ous knowledge:	Next steps KS4	7
14	P1 - Energy	۲,
and sound	P5 - Waves	۲.
		ť,
d		•
vords	DACTICE 1 KELVIEWEBEK	
Transverse	Energy Incidence	
Longitudinal	Opaque Refraction	
Parallel	Rarefaction Emergence	
Perpendicular	Density A P A Refractive inde	ĸ
Compression	Medium Spectrum	
Transparent	Reflection Dispersion	
	Absorption Wavelength	-
d r ords Longitudinal Parallel Perpendicular Compression Transparent	PACTISEEnergy OpaqueIncidenceNopaqueRefractionRarefactionEmergenceDensityEnergyMediumSpectrumReflectionDispersionAbsorptionWavelength	K

K35 - Teal o	77,7??		REPARE RACT		
Lesson No. and Title	Learning objectives	Working Scientifically Skills	Practical equipment		
1. Light vs Sound	ARE – Describe the two types of waves and give behaviours of light waves. AGD – Link behaviours of light waves to real like examples.	REPARE	DEMO – Slinky PRAC – Behaviours of light Tray of different objects, torches/ray boxes		
2. Speed of light	ARE – Explain how speed of light changes in different materials. AGD – Link the use of a model to explain the change in speed of light.		PRAC – Speed of light Wall paper paste, measuring cylinder, plastercin, string, stop watch		
3. Absorption & reflection	ARE – Describe the law of reflection and properties of surfaces that reflect well. AGD – Apply the law of reflection to various contexts.	WS8 – working with a method WS10 – using equipment correctly.	PRAC – Reflection Ray boxes, protractors, mirrors, pencils, rulers		
Assessment 1: Reflection					
4. Refraction	ARE – Describe what refraction is and why it occurs. AGD – Apply the theory of refraction to different scenarios and link to refractive index.	WS8 – working with a method WS10 – using equipment correctly.	PRAC – Refraction Ray boxes, glass block, protractors, pencils, rulers		
Assessment 2: Refraction					
5. The Eye	ARE – Identify and give the function of main structures in the eye. AGD – Explain the effect of a convex lens using a ray diagram.	WS8 – working with a method WS10 – using equipment correctly.	PRAC – What happens to the arrow? Arrow picture, convex lens, screen		
ERFORM					

KS3 – Year 8					
6.	Pin Hole Camera	ARE – Follow a method sheet accurately and relate parts of a camera to part of the eye. AGD – Identify differences between how the eye works compared to a camera.	WS8 – working with a method	PRAC – Making a pin hole camera Paper/card, scissors	
7.	Colour	ARE – Be able to summarise reading on the colour spectrum. ARE – Explain how white light is dispersed into colour spectrum. AGD – Describe the differences in wavelengths.	KCPAKC	PRAC – Dispersion of white light Ray boxes, prisms, screen	
8.	The colours we see	ARE – Explain why we see things the colours we do. AGD – Deduce the colour objects will look using different coloured filters.	WS8 – working with a method WS10 – using equipment correctly.	PRAC – Coloured filters Ray boxes, filters, coloured plastercine	

KS3 – Year 8

Assessment Criteria

Assessment No. & Title	Working Towards	Age Related Expectations	At Greater Depth
G _{n/a} UES	Describe some ways that light interacts with materials	Describe what happens when light interacts with materials	Predict how light will interact with different materials
1. Reflection	Describe the features of a mirr <mark>or</mark> image	Explain how images are formed in a plane mirror	Draw a ray diagram showing how an image is formed in a plane mirror
	Identify examples of specular reflection and diffuse scattering.	Explain the difference between specular reflection and diffuse scattering	Apply the concept of specular reflection and diffuse scattering to models and other examples.
2. Refraction	Describe what happens when light is refracted	Describe and explain what happens when light is refracted	Predict the path of light using a model of light refraction
n/a	Name parts of the eye and the camera	Describe how the eye works	Explain how the eye forms an image
n/a	State what happens to light when it passes through a prism	Describe how a simple camera forms an image	Compare a simple camera with the eye
n/a	State the primary and secondary colours of light	Explain what happens when light passes through a prism	Explain the formation of secondary colours
n/a	State the effect of coloured filters on light	Explain how filters and coloured materials subtract light	Predict how coloured objects will appear given different coloured lights and filters

??

